Lawrence Berkeley National Laboratory and the Helios Project

Regents Meeting 17 January, 2007

11 employees were awarded the Nobel Prize, (9 did their Nobel work at the Lab.)

ab 2Today:

59 employees in the National Academy of Sciences, 18 in the National Academy of Engineering, 2 in the Institute of Medicine

UC Berkeley

<u>Campu</u>

Berkeley Lab Staff

E.O. Lawrence introduced the idea of "team science"

Change in Program Share of Berkeley Lab Budget

The discovery of Dark Energy

Saul Perlmutter (2006 Run Run Shaw Prize, Fretinelli Prize)

Advanced Light Source

(materials science, advanced lithography, biology)

Roger Kornberg, 2006 Chemistry Nobel Prize work was done at the ALS; Rod MacKinnon, 2003 Nobel Prize also takes his data here

National Center for Electron Microscopy

A new generation of aberration corrected electron microscopes with 0.5 Å resolution and millisecond time resolution is being developed by 5 National Laboratories. The prototype machine will be installed at Lawrence Berkeley National Lab.

Gold nano-particles 2 - 3 nm diameter

National Energy Research Scientific Computing Center (NERSC)

The Energy problem and Lawrence Berkeley Lab's plans

- National security and energy security are intimately linked
- Economic prosperity
- The environment

Temperature rise due to human emission of greenhouse gases

Climate change due to natural causes (solar variations, volcanoes, etc.)

Climate change due to natural causes and human generated greenhouse gases

Emissions pathways, climate change, and impacts on California

K. Hayhoea, et al., PNAS 101, 12422 (2004)

	Aggressive control of GHG	Business as usual
Sierra snowpack	30–70%	73-90%

"...[this] could fundamentally disrupt California's water rights system."

Snowpack and glacier water sources all over the world will be affected.

CO₂ Concentration, Temperature, and Sea Level will rise long after Emissions are Reduced

Helios: Lawrence Berkeley Laboratory's attack on the energy problem

Area requirements to satisfy all US electricity at 15% efficiency

Cost of electricity generation (1990 dollars/kilowatt hour)

The Molecular Foundry (\$20 M / year) Director, Carolyn Bertozzi

Paul Alvisatos, Associate Lab Director Physical Science

Average production of corn per acre in the United States

(Original figure from Tollenaar, as cited by McLaughlin, 2004).

Total Surface Area by Land Cover/Use and Year in Millions of Acres, with Margins of Error

Year	Cropland*	CRP Land*	Pastureland	Rangeland	
1982	419.9 ± 2.1	0.0 ± 0.0	131.1 ± 1.4	415.5 ± 3.5	
1992	381.3 ± 2.0	52 million acres cropland has been taken out of production			
1997	376.4 ± 2.0	between 1982 and 2003. Another 31 million acres were			
2001	369.5 ± 2.0	converted into conservation preserves.			
2003	367.9 ± 2.4	31.5 ± 0.3	117.0 ± 1.8	405.1 ± 3.5	

Source: US Dept of Agriculture

Sunlight to energy via Bio-mass

More efficient use of water, sunlight, nutrients.

Drought and pest resistant

mproved conversion of cellulose into fuel.

New organisms for biomass conversion.

Ultimately, the *economics* of bio-fuels will be governed by the availability of water and sunlight.

- Miscanthus yields: 26 dry tons/acre demonstrated
 (Official DOE and USDA estimate uses 8 dry tons/acre)
- •100 M acres ⇒ ~ 200 B gal / year of ethanol

US consumption (2004) = 141 B gal of gasoline
 ~ 200 B gal of ethanol / year

> 2% conversion efficiency was demonstrated on non-irrigated, non-fertilized test field in Illinois.

Courtesy Steve Long, UIUC 23

Poplar tree

- ~ 45,000 genes
- Improve drought resistance and long term carbon sequestration
- Improve bio-mass production.

Termites have many specialized enzymes for efficiently digesting lignocellulosic material

Malaria

- Caused by *Plasmodium*, a single-cell protozoan
 - Transmitted by Anopheles mosquito
 - Destroys red blood cells
 - Plasmodium in South America and Southeast Asia is largely resistant to chloroquine – based drugs

Production of artemisinin in bacteria Jay Keasling

Synthetic Biology Anti-malarial drugs from microbes

Early milestone completion due to careful project management!

Milestone

Pathway elucidation and cloning of genes

Functional expression of genes

Production of amorphadiene at 25 g/L

Production of artemisinic acid at 100 mg/L

Production of artemisinic acid at 25 g/L

Research, Development &

Delivery

Institute for OneWorld Health

Cost 20¢ /cure

Laboratory

Microbial fuel synthesis

- Bio-prospect for new pathways and build de novo, non-natural pathways.
- Understand fuel toxicity and engineering tolerance and/or self-separation of the fuel.
- Develop the scientific tools that will form the basis for "industrial strength" synthetic biology systems.

Potential sources of funding

- BP: \$500 M / 10 years
 (UC Berkeley and UC San Diego were two of the 5 institutions asked to bid)
- DOE: \$125 M / 5 years
- State Support
- Foundation Support
- Private philanthropy
- Other industrial support

Proposed site of the Helios

N/ Dividing of

Life Sciences Complex

\$40 M Pledge from Governor Schwarzenegger to either UC Berkeley *or* UC San Diego if a BP bid is successful

Helios Fund raising:

\$30 M UC General Revenue Bond Authority

\$15 M Private Donations already pledged

\$1+1+2M Private Donations 2007 scientific program

\$ 3 M Renewable Energy Chair

\$10 M? Public Utilities Commission

\$XX M? Private Foundations

Los Alamos 1942 -1945

15 scientists who worked at AT&T Bell laboratories received Nobel Prizes.

Organizational culture

- Individual genius was nurtured, but individuals were also encouraged to quickly form teams to rapidly exploit ideas.
- The scientific direction was guided by collective wisdom and "managed" by top scientists with intimate, expert knowledge.
- Bold approaches were encouraged; some failure was expected, but there was an emphasis on recognizing failure quickly, and moving on to other opportunities.

Proposed Computational Research & Theory

The CRT program

- Strengthen the partnership with UCB computational and engineering programs
- Move the NERSC program back to the Main Site
- \$90M facility; \$80M from UC Bonds and \$10M from gifts
- 143,000 SF of computer floor and office space

